
 International Journal of Education and Science Research

 Review ISSN 2348-6457

 Volume-1, Issue-5 October- 2014

 www.ijesrr.org Email- editor@ijesrr.org

www.ijesrr.org Page 74

Approach for Information Leakage and Redundancy in Fine Grained Access

Control

Ranjeet Singh, Chiranjit Dutta

Faculty of Information Technology

SRM University

NCR Campus, Ghaziabad

ABSTRACT:
Fine Grained Access Control (FGAC) provides a row-level security mechanism that's built-in to the Oracle

database engine. FGAC allows to granularly specifying the exact information elements that each user may

access. Several proposals have been made for fine grained access control which has resulted in information

leakage and redundancy of a query. So we have proposed a query evaluation algorithm which supports fine

grained access control. There are several models for fine grained access control but major of them follow a

view replacement model in which these two problems occur. First is the redundancy of data as data is

masked from one level to other second is leakage of information through the error and exception message. In

our paper we have proposed our own algorithm for the disclosure policy of data residing in the database that

avoids the leakage of information and controls the redundancy of data.

Keywords: FGAC, Sound, Secure, Maximum

1. INTRODUCTION
Controlling the access to data based on user credentials is a fundamental part of database management

systems. In most cases, the level at which information is controlled extends only to a certain level of

granularity. But in some cases, there is a requirement to control access at a more granular way allowing the

users to see only the data they are supposed to see in a database table. Fine grained access control (FGAC)

provides row-level security capabilities to secure information stored in modern relational database

management systems.

FGAC implemented at the application level, has numerous drawbacks; hard to maintain consistency between

Various applications, such control may be bypassed. So placing access control at the database level, one can

ensure that access control policies are consistently applied to every user and every application.

 Several models have been proposed which include Virtual Private Database in Oracle, label-based access

control in DB2. Past work describes how a policy is specified and how to answer a query while enforcing a

policy. But a clear specification of the correctness criteria of the enforcement scheme is lacking.

In this paper we identify three criteria for enforcing fine grained access control policies in databases. An

algorithm that enforces fine grained access control policies should be sound, secure, and maximum.

Intuitively, the algorithm is sound if the answer returned by it is consistent with the answer when there is no

fine grained access control. The algorithm is secure if the returned answer does not leak information not

allowed by the policy.

The algorithm is maximum if it returns as much information as possible, while satisfying the first two

properties.

Our solution consists of a masking approach and a query evaluation algorithm. To strive for the maximum

property, we propose a masking approach that makes use of one type of variable rather than NULL to mask

unauthorized information. Based on this masking approach, we propose a query evaluation algorithm, and

prove that it is both secure and sound, and returns as much information as existing approaches. Finally, we

show that our algorithm can be implemented in existing DBMS, such as Oracle, using query modificatio

International Journal of Education and Science Research Review

Volume-1, Issue-5 October- 2014 ISSN 2348-6457

www.ijesrr.org Email- editor@ijesrr.org

www.ijesrr.org Page 75

2. LITERATURE SURVEY

A. Existing Approach

When a query k is issued, the evaluation of k is subjected to a cell-level disclosure policy, which specifies

the content of which cells in a table may be used to answer k. To answer k without violating the cell-level

disclosure policy r, one first generates masked versions of related tables by replacing all the cells that are

not allowed to be seen by r with NULL. After that, k is evaluated as a normal a query on the masked

versions of the tables with evaluation rules “NULL NULL” and “NULL c” for any constant value c.

 The above approach violates the sound property and the maximum property. When a query contains any

negation, as expressed using the keywords MINUS, NOT EXISTS or NOT IN, this approach returns incorrect

results, violating the sound property. To see this, we consider the following example.

EXAMPLE: We have a relation “Customer”, with four attributes: id, name, age, and phone, where id is the

primary key (Fig (a)). We mark each cell with “(Y)” or “(N)”, indicating whether the cell is allowed by the

policy.

Now consider the query k=“(SELECT name, phone FROM Customer) MINUS (SELECT name, phone

FROM Customer WHERE age 25)”. Let k1 = “SELECT name, phone FROM Customer” and k2 =

“SELECT name, phone FROM Customer WHERE age 25”. We have k = k1-k2. Under the cell-level

disclosure policy specified on “Customer”, the above algorithm would answer the query k with the relation

in Fig (d) which includes Nick, whose age is not in the correct answer. To see that the answer to k is such a

relation, observe that the answer to the sub-query k1 is the relation in Fig (b), and since the age of Nick

cannot be accessed, the answer to the sub-query k2 is the relation in Fig (c).

It violates the maximum property in several ways. First, when the primary key of a record is not allowed to

be seen, then no query can be answered, even for queries that project out that field.

a. Customer

ID name Age Phone

C001(Y) Linda

(Y)

32 (Y) 111-1111(Y)

C002(Y) Mary

(Y)

29 (Y) 222-2222(Y)

C003(Y) Nick

(Y)

34 (N) 333-3333(N)

C004(Y) Jack

(Y)

21 (Y) 444-4444(Y)

C005(Y) Mary

(Y)

30 (Y) 555-5555(N)

Name Phone

Linda 111-1111

Mary 222-2222

Nick NULL

Jack 444-4444

Mary NULL

International Journal of Education and Science Research Review

Volume-1, Issue-5 October- 2014 ISSN 2348-6457

www.ijesrr.org Email- editor@ijesrr.org

www.ijesrr.org Page 76

b. Result of k1

c. Result of k2

Name Phone

 Nick NULL

Jack 444-4444

(d) Result of k1–k2

Name Phone

Jack 444-4444

(e)Result without access control policy

Secondly, the approach loses information even if a selection with a trivial condition is performed on a table.

Suppose, the query K3 = “SELECT name FROM Customer WHERE phone = phone”. One would expect that

names of all people in “Customer” are returned. However, the approach mentioned above only returns three

tuples whose phone numbers are viewable.

3. ANALYSIS AND RESEARCH

3.1 Basic Theory of Work

 For achieving our goal we will make our system secure, sound and maximum.

 To make it secure we will implement following relational algebra expression in query evaluation plan:

 A query processing algorithm F is sound if and only if:

),(),,(kvSkrvfvkr

The algorithm f takes as input a database v, a disclosure policy r, and a query k, and outputs a result res = f(v,

r ,k). Here, the policy r specifies what information in v may be disclosed to answer query k.

We require that f returns only correct information. Let S denote the standard query answering procedure and

S(v, k) the result of answering the query k when the database state is v and there is no fine-grained access

control policy. Because r restricts access to v f(v, r, k) may return less information than S(v, k) does, but it

should not return wrong information. In particular, if a tuple is not in S(v, r), then it should not be in f(v, r, k)

either.

 A query processing algorithm f is secure if and only if:

)],,'(),,(()'[(' krvfkrvfvv Pvvkr

Name Phone

Linda 111-1111

Mary 222-2222

Mary NULL

International Journal of Education and Science Research Review

Volume-1, Issue-5 October- 2014 ISSN 2348-6457

www.ijesrr.org Email- editor@ijesrr.org

www.ijesrr.org Page 77

We requires that f(v, r, k) use only information allowed by r i.e. f(v, r, k) should not depend on any

information not allowed by r. We observe that the policy r defines an equivalence relation among all database

states. Furthermore, if f(v, r, k) does not depend on information not allowed by r, then by issuing queries and

observing the results, one should not be able to tell the difference among states that are equivalent under r.

The above property says that if the algorithm f is used for query processing, then when v and v’ are

equivalent under r, one cannot tell whether the database is in state v or in v’, no matter what query one

issues.

Suppose that f uses a portion in v that is not allowed by r when answering queries, then one should be able to

find a query k such that changing that portion to another value affects the query result (if one cannot find

such a query, then one can argue that the portion is not actually used). Let v’ be the result of the change and

we have f(v, r, k) != f(v’, r, k). Because the changed part is not allowed by r, we thus have 'vv r . This

violates our security definition.

 A query processing algorithm f is maximum if and only if:

))],'(()'[(' kvresvv rv (1)

we have),,(krvfres

We require that f returns as much information as possible. To appreciate the importance of this property, we

observe that a trivial algorithm that always returns no information (i.e., an empty result-set) would satisfy the

sound property and the secure property; however, such an algorithm is clearly unacceptable. We formalize

this as follows: A query processing algorithm f is maximum if and only if for each (v, r, k), and for each

simply generalized relation R that satisfies the above relation.

The above definition says that f(v, r, k) should contain at least as much information as any res that is

acceptable as an answer for v ,r ,k. Note that when (1) above is true, one can return res as an answer for

query k under any v’ such that 'vv r . Because),'(kvSres , returning res is always sound. As the same

res is returned for each v’ i.e. equivalent with v with respect to r, returning it under state v is secure.

3.2 A Secure and Sound Query Algorithm

We now proposed a sound and secure query algorithm. In order to preserve useful information for query

evaluation, we proposed a type of variable to label unauthorized cells. An unauthorized cell, rather than

being replaced by NULL, will be replaced by a variable of type-1. A type-1 variable is a symbol in some

alphabet. Given two different type-1 variables v1, v2, “v1 = v1” is true, while “v1 = v2” and “v1 = c” are

unknown, where c is a constant value.

We need to define the semantics of query operators differently depending on whether it is inside the scope of

a difference operator.

For a single query k, to ensure soundness, the result of k should return no more information than running k

over the unmasked version of a database. Therefore, we need to treat an unauthorized cell in a conservative

way so that the query result only contains tuples that are definitely correct. We call this evaluation a low

evaluation of k, denoted as k-. However, if k is on the right hand side of the difference operator, for example,

k’ - k, the result of k needs to also contain those tuples that are possibly correct. Only by doing so we can

ensure the soundness of the whole query k’ - k. We call this evaluation a high evaluation of k, denoted as k
-
.

Applying the sound and secure query evaluation algorithm to the example. We consider the relation

“Customer” and the query k as given in the previous example again. The masked version of “Customer”

is shown in Fig (a) below. Let k1 = “SELECT name, phone FROM Customer” and k2 = “SELECT name,

phone FROM Customer WHERE age 25”. We have k = k1 – k2. In order to ensure soundness, we compute

k- = k1 -a k2, which requires the knowledge of k1- and k2
-
 . The answers to k1- and k2

-
 are presented in Fig (b)

International Journal of Education and Science Research Review

Volume-1, Issue-5 October- 2014 ISSN 2348-6457

www.ijesrr.org Email- editor@ijesrr.org

www.ijesrr.org Page 78

and Fig (c) respectively. In particular, tuple (Nick, v2) is included in the answer to k
-
2 . The answer to k- is

{(Jack, 444-4444)} (Fig (d)), which is sound.

ID Name Age Phone

C001 Linda 32 111-1111

C002 Mary 29 222-2222

C003 Nick v1 v2

C004 Jack 21 444-4444

C005 Mary 30 v3

 (a)Masked version of customer (b)Result of k1-

b. Result of k2

(d) k- = k1 –a k2

4. FINDINGS

(i). It can be implemented with the business applications of ERP and OLAP oriented database system.

(ii). It will give enhanced security to the system.

(iii). It can be used to implement a better query evaluation algorithm for the database presently used

(iv). It will give better information management.

5. CONCLUSION

In the work our main focus was to develop a sound, secure and maximum query evaluation plan that support

fine grained access control technique on all type of widely used database system used now a days. Our work

is limited to read access control only. This technique may or may not work on write access control. Fine

grained access control for update and deletion will be done in our future work. Major point to be kept in

mind is that we can implement our algorithm on only such database software that support basic set operators

used in relational algebra.

Name Phone

Linda 111-1111

Mary 222-2222

Nick v2

Jack 444-4444

Mary v3

Name Phone

Linda 111-1111

Mary 222-2222

Nick v2

Mary v3

Name Phone

Jack 444-4444

International Journal of Education and Science Research Review

Volume-1, Issue-5 October- 2014 ISSN 2348-6457

www.ijesrr.org Email- editor@ijesrr.org

www.ijesrr.org Page 79

REFERENCES
1. www.wikipedia.com/ fine grained access control

2. www.w3schools.com/databaseT.Veerarajan, Discrete Mathematics

3. Database Management System, Korth Govind Kabra, Ravishankar Ramamurthy, S. Sudharshan,

4. Fine Grained Access Control Arup Nanda, Proligence, Inc.

5. R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Hippocratic databases. In Proceedings of the 24th International Conference

on Very Large Databases. ACM Press, Aug. 2002

6. M. Stonebraker and E. Wong. Access control in a relational database management system by query modification. In
Proceedings of the 2004 Annual Conference(ACM/CSC-ER), pages 180–186. ACM Press, 2004.

7. LeFevre, R. Agrawal, V. Ercegovac, R. Ramakrishnan, Y. Xu, and D. DeWitt. Limiting disclosure in Hippocratic

databases. In Proceedings of the 30th InternationalConference on Very Large Data Bases (VLDB), Aug. 2004

8. S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy. Extending query rewriting techniques for fine-grained access control.

In Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data, pages 551–562, Paris,

France, 2004. ACM Press.

http://www.wikipedia.com/

